

In-line attenuators are used for reducing the optical power in fiber-optic networks. On the one hand, this is necessary for many test setups, on the other hand some transmission systems require an adjustment of the fiber-optic attenuation to the system's dynamic. In-line attenuators are passive components which can be operated in both directions. In many applications in-line attenuators present an optimum, cost-efficient alternative to the combined use of intermediate attenuation connectors and normal patchcords, and simultaneously reduce the number of required coupling locations. The in-line attenuators are manufactured using an optimized Fused Biconical Taper (FBT) technology ensuring optimum performance parameters and high long-term stability.

Types

- Single-Window In-Line Attenuators are optimized for a defined wavelength, e. g. 1310 nm or a wavelength range within an optical window.
- Dual-Window In-Line Attenuators are optimized for predefined wavelength ranges in the second and third optical windows and guarantee a uniform attenuation there.

■ Triple-Window In-Line Attenuators

guarantee a uniform attenuation across several optical windows, e. g. for 1310 \pm 50nm and 1550 \pm 100nm.

Alternatively in-line attenuators are available for any wavelengths and wavelength ranges.

Applications

- telecom and data networks
- measuring units and systems and testing facilities
- transmit, receive and monitoring facilities of optical transmission systems

Models

- different models available with primary-coated fibers, with pigtails in fiber and cable designs
- available without connectors or terminated with optical connectors

For check lists and additional ordering information for our products visit our website or see separate data sheets.

Optical parameter

		Single-Window Attenuator (ASW)	Dual-Window Attenuator (ADW)	Triple-Window Attenuator (ATW)
Wavelength (nm)		1310 ±40 or 1550 ±40	1310/1550 ±40	1310 ± 50 and 1550 ± 100
Attenuation (1)	1dB, 2dB, 3dB	±0,30dB	±0,50dB	±0,70dB
	4dB, 5dB	±0,50dB	±0,70dB	±0,90dB
	6dB, 7dB, 8dB, 9dB	±0,70dB	±0,90dB	±1,10 dB
	10 dB	±0,90dB	± 1,10 dB	±1,30dB
	15 dB, 20 dB, 25 dB	±1,00dB	±1,30dB	±1,50dB
Temperature Dependent Loss (2)		±0,1dB		
Polarisation Dependent Loss		on request, depending on attenuation value		
Return Loss (3)		> 55 dB		

 $^{^{\}left(1\right)}$ incl. wavelength, temperature and polarization dependence, without connectors

 $^{^{(2)}}$ from -40 °C to +85 °C for Size 01, otherwise from -5 °C to +70 °C

⁽³⁾ without connectors, measured at the window's central wavelength(s)